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Abstract. The initial expression of requirements for a computer-based system 
is often informal and possibly vague. Requirements engineers need to examine 
this often incomplete and inconsistent brief expression of needs. Based on the 
available knowledge and expertise, assumptions are made and conclusions are 
deduced to transform this “rough sketch” into  more Complete, Consistent, and 
hence Correct (the three Cs) requirements. This paper addresses the question of 
how to characterize these properties in an evolutionary framework, and what 
relationships link these properties to a customer’s view of correctness. More-
over, we describe in rigorous terms the different kinds of validation checks that 
must be performed on different parts of a requirements specification in order to 
ensure that errors (i.e., cases of inconsistency and incompleteness) are detected 
and marked as such, leading to better quality requirements. 

1   Introduction 

Software development is typically commenced when a problem is identified that 
may require a computer-based solution. The expression of the requirements for the 
new system is often informal and possibly vague, as Jackson puts it [10], a “rough 
sketch”. Requirements engineers need to examine this incomplete and often inconsis-
tent brief expression and based on the available knowledge and expertise, and possi-
bly on further investigation, to transform this “rough sketch” into a correct require-
ments specification. The requirements are then presented to the problem-owners for 
validation. As a result, new requirements are identified that should be added to the 
specification, or some of the previously stated requirements may need to be deleted in 
order to improve it. So, at each step of the evolution of requirements, the specification 
can loose requirements as well as gain some. One of the critical tasks of requirements 
engineers in this process is to ensure that requirements specification at each step re-
mains correct, or at least that errors are found as early as possible, their sources iden-
tified, and their existence tracked for future discussion. 



It is frequently the case that in an attempt to maintain consistency within the re-
quirements we remove one or more requirements from the specification and fail to 
preserve its completeness. Conversely, when we add new requirements to the specifi-
cation to make it more complete, it is possible to introduce inconsistency in the speci-
fication. In this paper we argue that there is an important causal relationship between 
Consistency, Completeness and Correctness (the three Cs) of requirements. Increas-
ing the completeness of a requirements specification can decrease its consistency and 
hence affect the correctness of the final product. Conversely, improving the consis-
tency of the requirements can reduce the completeness, thereby again diminishing 
correctness. We ask the question: “Is it impossible to adequately address all three Cs 
simultaneously?” This phenomenon needs to be investigated further and guidelines 
have to be developed for requirements engineers as to which of these properties is of 
higher priority to maintain at each step of requirements evolution. 

Correctness by itself is a vague concept. We can consider correctness from at least 
two different perspectives: 

(1) From a formal point of view, correctness is usually meant to be the combina-
tion of consistency and completeness. Consistency refers to situations where 
a specification contains no internal contradictions, whereas completeness re-
fers to situations where a specification entails everything that is known to be 
“true” in a certain context. We will be more specific when we refer to cor-
rectness in the next section, but for the moment let us emphasize that consis-
tency is an internal property of a certain body of knowledge, whereas com-
pleteness is defined with respect to an external body of knowledge. 

(2) From a practical point of view, however, correctness is often more pragmati-
cally defined as satisfaction of certain business goals. This indeed is the kind 
of correctness which is more relevant to the customer, whose goal in having 
a new system developed is to meet his overall business needs. 

In this paper we investigate what is the relationship between these two notions of 
correctness, and what kind of arguments can be made in support of the correctness of 
a specification. This question will lead us to explore how consistency and complete-
ness affect these two notions.  

Davis states that completeness is the most difficult of the specification attributes to 
define and incompleteness of specification is the most difficult violation to detect [4]. 
According to Boehm [2], to be considered complete, the requirements document must 
exhibit three fundamental characteristics: (1) No information is left unstated or “to be 
determined”, (2) The information does not contain any undefined objects or entities, 
(3) No information is missing from this document. The first two properties imply a 
closure of the existing information and are typically referred to as internal complete-
ness. The third property, however, concerns the external completeness of the docu-
ment [3]. External completeness ensures that all of the information required for prob-
lem definition is found within the specification. This definition for external complete-
ness clearly demonstrates why it is impossible to define and measure absolute com-
pleteness of specification because how could analysts know with certainty what is 
missing from the specification when they do not even know what it is that they are 
looking for in the first place. Clearly one of the available techniques that could assist 



in the determination of external completeness of the specification is domain model-
ing. 

2   An Evolutionary Model of Requirements Correctness 

As mentioned above, completeness is a relative measure and may be determined only 
in relation to an external reference; it follows from (1) above that correctness in turn 
needs to be considered with respect to such an external reference.  
According to Jackson [10,11], as illustrated in Figure 1, the role of requirements (R) 
in software engineering is to state relationships that are desired to hold between ele-
ments of a certain real world domain (D). Conversely, the role of a specification (S) is 
to provide instructions for a machine that has an interface to D so that the properties 
required in R hold. 

S R 

D 

 

Figure 1 A simple diagram showing the relationship between Requirements, 
Domain, and Specification 

 
Formally, we can write S ∪  D ⊨ R. In informal terms, this means that – given the 

assumption that the machine will perform as instructed by the specification, and that 
our model of the domain faithfully predicts how the real world will behave – what we 
know about the domain, together with what we know about the physical interfaces of 
the machine, will make R true in the end. This formula allows us to discuss the com-
pleteness of S with respect to R, but not the completeness (and thus the correctness) 
of R in isolation. Moreover, this relation must not be regarded as a method to synthe-
size S and D given R. Rather, it should be considered like a proof obligation that must 
be discharged if we want to prove the correctness of S. Indeed, S ∪  D ⊨ R can be 
seen as proving that S and D together are complete with respect to R – that is, nothing 
that is required (by R) to hold is left out of either S or D. Also as part of the correct-
ness proof, S ∪  D must be shown to be consistent (unless we do not have any re-
quirement at all – in that case, even an inconsistent specification could be considered 
complete).  

In informal terms, proving that S ∪  D is consistent can be thought of as ensuring 
that we are not asking the machine (in S) to perform something that is not possible in 
the domain (as stated in D). According to (1), proving both completeness and consis-
tency will prove the correctness of S with respect to R and D: in essence, this is say-



ing that the specification we have developed satisfies our requirements in the given 
domain. 

The problem of the correctness of R can only be formulated in a more complex set-
ting, depicted in Figure 2, that provides an external reference for proving complete-
ness. This setting presents an evolutionary view on the requirements. Several revi-
sions of the requirements are considered, each one serving the role of a specification 
with respect to the previous one. This situation may be found in practice when we 
consider the common case of a product family undergoing several release cycles, but 
also, at a finer grain, inside a single release cycle. In fact, requirements are rarely – if 
ever – created all at once. Rather, they are usually obtained by progressively evolving 
a previous version of the same requirements, in order to reflect an increased under-
standing of the customer’s needs. Furthermore, the domain gets evolved in a similar 
way, based on a deeper investigation about the relevant properties of the real world 
within which the system will operate. 
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Figure 2 Relationship between S, D, and R in an evolutionary framework 

As shown in Figure 2, we assume that at the beginning of this chain of evolution 
we have a statement of the business needs of the customer (B), and at the end of the 
chain we have a final specification that can be used for the implementation of the 
system. We will assume that the burden of proving the correctness of B with respect 
to the customer’s real needs is on the customer, or on the analyst that performed the 
initial elicitation (or market analysis for the case of shrink-wrapped software). As an 
example, B might contain statements like “We need to reduce the time needed to 
deliver the product after a customer’s order has been received”. The correctness of 
such a statement, e.g., how effective such a measure would be to ensure bigger profits 
at the end of the quarter, is better left to management studies, and is in our opinion 
not a subject for requirements engineering. Thus, B provides a basis to avoid infinite 
regression, and serves as a reference point for the second definition of correctness 
that we gave in the previous section. Of course, the customer can change the business 
goals at any time, but then conceptually the evolution cycle will have to start again. In 
reality, however, in those circumstances we expect that the requirements engineer 
will be able to reuse most of the domain and requirements information previously 
captured.   



In Figure 2, the arrows represent the evolutionary steps that lead to improved re-
quirements and domain descriptions. In our view, requirements evolution needs not 
be monotonic; in fact, we expect that during the analysis process, and with a better 
understanding of the domain and of the customer’s goals, the requirements analyst 
can change his mind about the desired behaviour of the system, adding or dropping 
requirements at any time. Thus, the arrows going from Ri to Ri+1 do not represent 
strict refinement, but simply change.  

On the contrary, we do assume that domain refinement is monotonic. Domain re-
finement occurs, among other cases, when new properties of the domain are incre-
mentally uncovered as we come across requirements that may be in need of additional 
information from the domain to make them fully understood. Monotonicity in this 
context means that subsequent revisions of D can be more detailed or include more 
facts that previous versions, but they cannot contradict what was already known to be 
factually true of the real world. Naturally, this applies to observations made, and not 
to rules inducted by generalizing the observations For example, we could observe that 
when we send some text to a printing device, the text gets printed, and infer that this 
is true of any text – a knowledge that would enter our initial domain model. Later, we 
could discover instead (by digging into the manuals of by means of further experi-
mentation) that certain sequences are interpreted as commands (e.g., clearing the 
current print buffer) and not printed. We could then refine our domain model by add-
ing appropriate exceptions to the general rule. This refinement would make the model 
more faithful, but would not contradict the original observation that the text sent in 
our first experiments was printed out. 

Of course, this monotonicity assumption does not include the situation where con-
tradictions between two successive Ds are due to inaccurate descriptions (e.g., cleri-
cal errors) of the real world. As we will see, this fact does not invalidate our argu-
ment; and we simply assume that such inaccuracies are corrected in the course of the 
development. However, if we decide to treat requirements model Ri as a logical the-
ory, we can then follow the distinctions made in the theory change literature [12] 
between “revising” and “updating” a body of knowledge. The former is used when 
we are obtaining new information about a static world where newer results may con-
tradict the old ones while the latter consists of bringing the information up to date 
when the world described by it changes (i.e. a dynamic domain).  

In formal terms, the intertwining between requirements evolution and correctness 
can be expressed as follows (for simplicity, we will use the name R0 for B, and Rn+1 
for S). We have assumed that R0 is correct – that is, complete with respect to the real 
user business needs and internally consistent.  

At each step, we have to prove that 
 
Ri ∪  Di ⊨ Ri-1    (completeness of Ri and Di w.r.t. Ri-1) and 
Ri ∪  Di ⊭⊥   (consistency of Ri ∪  Di). 
 
Moreover, at each step Di ⊨ Di-1    (monotonicity for domain descriptions). It im-

mediately follows that:     
Ri ∪  Di ⊨ Ri-1 ∪  Di-1. 
 



This can be interpreted as the fact that, even if the various versions of the require-
ments are not in a refinement relationship, the union of the requirements and of the 
domain descriptions are. It follow by simple induction that 

 
Rn+1 ∪  Dn+1 ⊨ R0 ∪  { } 
or, in other terms, S ∪  Dn+1 ⊨ B    
That is, the final specification, deployed in the domain described by our final do-

main model, satisfies the customer’s business goals. This last expression is indeed our 
definition (2) of correctness.  

3 Example and Discussion 

Let us illustrate the concepts presented above with the following example. 
Consider the high-level business goals of a shop owner. As part of these goals, she 

wants an automatic sliding door to be installed at the entrance, to encourage prospec-
tive customer to enter the shop, and improve the image of her business. We could 
state that goal as B=R0={when a customer comes near the entrance, the door shall 
open}. At the beginning of the development process, we have an empty domain 
model (i.e., the description of the domain is an empty set), and of course B cannot be 
realistically implemented as it is on a physical machine. As part of the evolutionary 
approach presented above, we have to progressively move parts of our proof obliga-
tions from R to D. As a first domain description we could have D1={when a person 
comes near the entrance, a presence sensor gets activated} and R1={when the sensor 
gets activated, the door shall open}. Notice that R1 and B are not in any formal en-
tailment relationship (as expected, due to the non-monotonicity of refinement on R). 

However, if we try to prove that R1 ∪  D1 ⊨ B, we fail. The reason is that B asks 
for customers to cause the opening of the door, whereas our investigation in the do-
main of presence detectors has shown that sensors can only detect persons1, and are 
not able to discriminate between (past or future) customers and people just passing 
by.  

In this case, the failure at proving consistency (and thus correctness) is due to an 
infeasible statement of business needs. We could (greatly) enhance our domain, in-
vestigating biometrics, face recognition, and other advanced surveillance techniques 
in order to recognize potential customers even before they enter the shop, but let us 
assume instead that a weakened version of B (concerning people, not customers) is 
acceptable in this case. Then, R1 ∪  D1 is consistent and complete with respect to the 
new B. We can repeat the process, obtaining 

  

                                                           
1 In fact, such sensors can generally only sense movement in a certain area, not even per-

sons. This is a nice and desirable feature when we consider parents pushing their strollers 
towards the entrance, but an inconvenience when we think of stray dogs and cats. For simplic-
ity, we ignore the issue in this example: selecting the proper kind of sensors lies in the domain 
of system engineering, whose interplay with requirements engineering has been investigated in 
other works [14] 



D2=D1 ∪  {when a sliding door’s motor is turned on, the door opens} and  

R2={when the sensor gets activated, the door’s motor shall be turned on}.  

Again, we can prove that R2 ∪  D2 is consistent, and complete with respect to R1. 
Moreover, we can prove that D2 ⊨ D1 (actually, it contains it). Also, R2 ⊭ R1; once 
again we are confronted with non-monotonic evolution of the requirements. Iterating 
the process, we will eventually come to a specification like S={when a signal is de-
tected on the input line associated with the door’s presence sensor, establish +5V on 
the output line associated with the door’s motor}, with a correspondingly detailed 
domain description. 

If we have proved consistency and completeness at each step, we obtain by induc-
tion that this specification, together with its domain description, are correct with re-
spect to B (according to (1)). Yet, this is exactly what correctness in definition (2) is 
all about. Definitions (1) and (2) actually express the same basic notion. The intuitive 
idea of correctness from the customer’s point of view given in (2) is just a coarse-
grain view of the more formal and precise definition given in (1). 

It is important to stress that the framework presented here identifies which kind of 
consistency and completeness checks must be performed to verify correctness, but do 
not prescribe how to handle them, and in particular do not impose that the require-
ments and domain model themselves must stay correct at all times. It is a well-known 
fact of life that requirements are often incomplete and inconsistent during most of 
their life. The three proof obligations discussed above (completeness of Ri and Di 
w.r.t. Ri-1, consistency of Ri ∪  Di, and monotonicity of domain descriptions) can be 
interpreted as validation checks that can (and should) be made during requirements 
evolution in order to identify and expose possibly latent errors. Once such errors are 
exposed, they can be tolerated (as advocated by [1,5,6,9,13]), if they reflect a genuine 
conflict of goals or simply there is not enough information available yet to decide 
how to correct them, or corrected immediately by changing the relevant requirements 
or domain model elements. In any case, an informed decision can be taken only after 
such cases have been identified and carefully analyzed. 

We can now look back at the question we posed in the introduction. As the brief 
discussion above and the illustrative example have shown, we believe that the two 
notions of correctness are indeed closely related to each other. It is thus important to 
explore the more formal treatment implied by definition (1), because that will provide 
us with the pragmatically more relevant correctness in (2). We can state that a formal 
treatment of consistency, completeness and correctness in requirements specifications 
will allow us to satisfy the business goals of the customer (beside being a valuable 
contribution by itself).  

4 The Three Cs in Practice 

Although it is an advantage to have a formal proof of correctness of a specification 
(e.g. as in [8]), it may not be practical or may be too costly to do so. Indeed, in many 
cases such proofs can be carried out by informal (but rigorous) inspections of the 



requirements and domain descriptions. The decision as which is the more appropriate 
course of action depends on the degree of risk the stakeholders are prepared to take. 
In safety critical software, for example, formal descriptions and proofs are usually 
deemed necessary, while in business applications other factors like time to market or 
development cost can be more important. Moreover, it is often the case that the re-
quirements are vague at the beginning, and gain formality while their evolution pro-
ceeds. It is thus not uncommon for the respective proofs to be rather informal at the 
beginning, while becoming more and more formal as the requirements and domain 
descriptions themselves become more formalized. 

Of course, the main advantage of the approach we have proposed lies in the capa-
bility of immediately identifying those changes in the requirements or in the domain 
model that might introduce errors in the specification, thus achieving more precise 
verification and validation of the requirements. This kind of checks are much more 
efficient if performed in a continuous way (i.e., each edit action on the requirements 
or on the domain model triggers a check of the three properties described in Section 
2) and automatically, by using appropriate tools [7,16]. Automation can be achieved 
by directly writing the requirements in a formal language that allows automatic theo-
rem proving (e.g., propositional logic or Datalog), or by using controlled natural 
language and providing a suitable translation layer (as done, for example, in our pre-
vious work cited above) instead. Naturally, for reasonably simple specifications (i.e., 
small, well written, and easily navigable), and given enough resources, manual verifi-
cation is also possible and – as said above – can even be more convenient. However, 
it is difficult to guarantee constant reliability of these manual checks, so automation 
should be sought whenever possible. 

The ability to evaluate the impact that a new proposed requirement may have on 
the correctness of a specification is also of great importance in other cases. For exam-
ple, the requirements prioritization used during negotiations could incorporate an 
indication of how much and to what extent each of the requirements being discussed 
contributes to the overall completeness of the specification. This could be achieved 
by examining and ranking the dependencies among individual requirements and also 
by building requirements into clusters that contribute to reach a specific business 
goal.   

Also, at each step of evolution, it is important to identify any emerging inconsis-
tencies resulting from adding new requirements. By providing automated tools (e.g. 
[16]), that suggest alternative solutions on how to manage inconsistencies, together 
with the corresponding measures of completeness for each alternative, the require-
ments engineer could be guided on what course of action to follow to maintain a 
balance of completeness and consistency and hence correctness of requirements 
specifications.  

5 Conclusion and Future Works 

In this paper we provided a theoretical underpinning for the pragmatic view of cor-
rectness, thus introducing more rigor into the process of requirements evolution. In 
detail, we have described which kind of proofs must be carried out at each step during 



the evolution of the requirements in order to ensure that the final specification of a 
software system satisfies the business goals of its customer. We have also proposed 
various ways in which our model can be applied to real-life circumstances, both for 
validation purposes and as a supporting technique during requirements negotiation 
and prioritization.  

Furthermore, we hope that this work will bring to the attention of requirements en-
gineers the importance of considering the three Cs (and their often competing nature) 
at each step of evolution, rather than as one-shot properties to be checked only as part 
of the final validation of the specification. 

Our vision is a starting point for a new line of research that aims to provide practi-
cal tools and methods that alleviates the burden of providing proofs at each stage of 
system evolution. Common lore has practitioners voicing unflattering judgments like: 
“Computer scientist… Their pronouncements are more relevant to Zen than to the no-
nonsense business of building useful … programs and systems. They have no answer 
to real life problems like users who change their minds or requirements that are in a 
constant state of flux.” (Anonymous, cited in [10] page 113). We believe instead that 
the integration of rigorous and formal results in an evolutionary model of require-
ments development helps in reaching those very no-nonsense business goals that were 
called for in the statement above. 

In related research we have developed automated tools supporting consistency 
checking in natural language requirements [16] as well as in formal logic [15]. It is 
our intention to extend our approach to also support completeness checking at each 
step of evolution, thus providing automated proofs of correctness as outlined in Sec-
tion 2. Such automated support will allow us to test the validity of our argument by 
applying it in a case study over an entire release of a product family, that we plan to 
jointly develop with an existing industry partner. 
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